This is to invite you to our next PhD Proposal defense seminar by Mr. Brian Owuor on Monday 24th May 2021 between 11:00 am - 12:00 pm.
Here below are the details:
TITLE: Investigation on the Performance and Stability of Cs3Sb2I9 Based Perovskite Solar Cells Employing P3HT And CuSCN Hole Transport Materials.
PRESENTER: Mr. Brian Owuor, PhD Student
MAIN SUPERVISOR: Prof. F. W. Nyongesa
ABSTRACT:
Methylammonium lead iodide (CH3NH3PbI3) perovskite materials have, in recent years, evolved as excellent absorber materials in perovskite solar cells. Whereas devices utilizing CH3NH3PbI3 as the absorber material exhibit high efficiencies exceeding 20 percent, critical concerns remain, such as the potential harmful effects of lead and the device instability under humid air conditions. Owing to its enhanced air-stability and superior optical properties, cesium antimony iodide (Cs3Sb2I9) perovskite material has recently gained considerable interest as an appropriate replacement for Pb-based perovskites. Herein, purely inorganic cesium antimony iodide (Cs3Sb2I9) perovskite material will be obtained by co-evaporation of CsI and SbI3. In addition to the perovskite materials, the hole-transport materials also play an important role in the efficiency and stability of the cells.Copper thiocyanate (CuSCN) and poly (3-hexylthiophene) (P3HT) hole-transport materialshave also received significant attention due to their low cost, considerably high hole-mobility, excellent thermal stability and suitable energy levels. In this study,hole-transporting layers ofP3HT and CuSCN will be deposited by spin coatingtechnique. Optical characteristics of the films will be studied by UV-Visible spectroscopy. X-ray diffraction spectroscopy will be utilized to investigate the structural features of the deposited films. Determination of band gap shifts of the deposited films will be evaluated by photoluminescence (PL). Photothermal deflection spectroscopy (PDS) will be utilized to determine the deep & shallow defects while the surface electronic structure of the perovskite layer will be evaluated using x-ray photoelectron spectroscopy (XPS). Morphological properties of the films together with the cross-sectional structure of the fabricated solar cells will be analyzed by scanning electron microscope (SEM). Solar simulator with irradiation of 1000W/m2 (A.M 1.5) will be employed to study the current–voltage characteristics of the fabricated solar cells. Finally, surface photovoltage (SPV) and impedance spectroscopy (IS) will be used to determine carrier generation and recombination of the fabricated cells.
ALL ARE WELCOME AND PLEASE KEEP TIME!